Probability Theory by Curtis T. McMullen

Small book cover: Probability Theory

Probability Theory

Publisher: Harvard University
Number of pages: 98

Contents: The Sample Space; Elements of Combinatorial Analysis; Random Walks; Combinations of Events; Conditional Probability; The Binomial and Poisson Distributions; Normal Approximation; Unlimited Sequences of Bernoulli Trials; Random Variables and Expectation; Law of Large Numbers; Integral-Valued Variables. Generating Functions; Random Walk and Ruin Problems; The Exponential and the Uniform Density; Special Densities.

Home page url

Download or read it online for free here:
Download link
(630KB, PDF)

Similar books

Book cover: Lectures on Elementary ProbabilityLectures on Elementary Probability
by - University of Arizona
From the table of contents: Combinatorics; Probability Axioms; Discrete Random Variables; The Bernoulli Process; Continuous Random Variables; The Poisson Process; The weak law of large numbers; The central limit theorem; Estimation.
Book cover: Random Graphs and Complex NetworksRandom Graphs and Complex Networks
by - Eindhoven University of Technology
These lecture notes are intended to be used for master courses, where the students have a limited prior knowledge of special topics in probability. We have included many of the preliminaries, such as convergence of random variables, etc.
Book cover: Almost None of the Theory of Stochastic ProcessesAlmost None of the Theory of Stochastic Processes
by - Carnegie Mellon University
Text for a second course in stochastic processes. It is assumed that you have had a first course on stochastic processes, using elementary probability theory. You will study stochastic processes within the framework of measure-theoretic probability.
Book cover: Probability, Random Processes, and Ergodic PropertiesProbability, Random Processes, and Ergodic Properties
by - Springer
A self-contained treatment of the theory of probability, random processes. It is intended to lay theoretical foundations for measure and integration theory, and to develop the long term time average behavior of measurements made on random processes.