Logo

Introduction to Machine Learning

Small book cover: Introduction to Machine Learning

Introduction to Machine Learning
by

Publisher: Cambridge University Press
Number of pages: 234

Description:
Over the past two decades Machine Learning has become one of the mainstays of information technology and with that, a rather central, albeit usually hidden, part of our life. Smart data analysis will become even more pervasive as a necessary ingredient for technological progress.

Home page url

Download or read it online for free here:
Download link
(10.3MB, PDF)

Similar books

Book cover: Reinforcement Learning and Optimal ControlReinforcement Learning and Optimal Control
by - Athena Scientific
The book considers large and challenging multistage decision problems, which can be solved by dynamic programming and optimal control, but their exact solution is computationally intractable. We discuss solution methods that rely on approximations.
(10265 views)
Book cover: Introduction to Machine Learning for the SciencesIntroduction to Machine Learning for the Sciences
by - arXiv.org
This is an introductory machine learning course specifically developed with STEM students in mind, written by the theoretical Condensed Matter Theory group at the University of Zurich. We discuss supervised, unsupervised, and reinforcement learning.
(3644 views)
Book cover: Introduction To Machine LearningIntroduction To Machine Learning
by
This book concentrates on the important ideas in machine learning, to give the reader sufficient preparation to make the extensive literature on machine learning accessible. The author surveys the important topics in machine learning circa 1996.
(30615 views)
Book cover: An Introductory Study on Time Series Modeling and ForecastingAn Introductory Study on Time Series Modeling and Forecasting
by - arXiv
This work presents a concise description of some popular time series forecasting models used in practice, with their features. We describe three important classes of time series models, viz. the stochastic, neural networks and SVM based models.
(12534 views)