Algebraic K-Theory
by Hyman Bass
Publisher: W. A. Benjamin 1968
ISBN/ASIN: B0006BVKKM
Number of pages: 793
Description:
The algebraic K-theory presented here is, essentially, a part of general linear algebra. It is concerned with the structure theory of projective modules, and of their automorphism groups. Thus, it is a generalization, in the most naive sense, off the theorem asserting the existence and uniqueness of bases for vector spaces, and of the group theory of the general linear group over a field.
Download or read it online for free here:
Download link
(35MB, PDF)
Similar books

by Ioannis P. Zois - arXiv
We present introductory lectures on K-Theory covering its basic three branches, namely topological, analytic and Higher Algebraic K-Theory. The skeleton of these notes was provided by the author's notes from a graduate summer school on K-Theory.
(9009 views)

by Hyman Bass - Tata Institute of Fundamental Research
Topics: The exact sequence of algebraic K-theory; Categories of modules and their equivalences; The Brauer group of a commutative ring; The Brauer-Wall group of graded Azumaya algebras; The structure of the Clifford Functor.
(8759 views)

by Olivier Isely - EPFL
Algebraic K-theory is a branch of algebra dealing with linear algebra over a general ring A instead of over a field. Algebraic K-theory plays an important role in many subjects, especially number theory, algebraic topology and algebraic geometry.
(6981 views)

by Eric M. Friedlander
The author's objective was to provide participants of the Algebraic K-theory Summer School an overview of various aspects of algebraic K-theory, with the intention of making these lectures accessible with little or no prior knowledge of the subject.
(11056 views)