Logo

Differential Geometry: A First Course in Curves and Surfaces

Small book cover: Differential Geometry: A First Course in Curves and Surfaces

Differential Geometry: A First Course in Curves and Surfaces
by

Publisher: University of Georgia
Number of pages: 127

Description:
Contents: Curves (Examples, Arclength Parametrization, Local Theory: Frenet Frame, Some Global Results), Surfaces: Local Theory (Parametrized Surfaces and the First Fundamental Form, The Gauss Map and the Second Fundamental Form, The Codazzi and Gauss Equations, Covariant Differentiation, Parallel Translation, and Geodesics) Surfaces: Further Topics (Holonomy and the Gauss-Bonnet Theorem, Hyperbolic Geometry, Surface Theory with Differential Forms, Calculus of Variations and Surfaces of Constant Mean Curvature).

Home page url

Download or read it online for free here:
Download link
(1.8MB, PDF)

Similar books

Book cover: Course of Differential GeometryCourse of Differential Geometry
by - Samizdat Press
Textbook for the first course of differential geometry. It covers the theory of curves in three-dimensional Euclidean space, the vectorial analysis both in Cartesian and curvilinear coordinates, and the theory of surfaces in the space E.
(16402 views)
Book cover: Tensor AnalysisTensor Analysis
by - Princeton Univ Pr
The lecture notes for the first part of a one-term course on differential geometry given at Princeton in the spring of 1967. They are an expository account of the formal algebraic aspects of tensor analysis using both modern and classical notations.
(20511 views)
Book cover: Introduction to Differential Geometry and General RelativityIntroduction to Differential Geometry and General Relativity
by
Smooth manifolds and scalar fields, tangent vectors, contravariant and covariant vector fields, tensor fields, Riemannian manifolds, locally Minkowskian manifolds, covariant differentiation, the Riemann curvature tensor, premises of general relativity.
(22760 views)
Book cover: Topics in Differential GeometryTopics in Differential Geometry
by - American Mathematical Society
Fundamentals of differential geometry: manifolds, flows, Lie groups and their actions, invariant theory, differential forms and de Rham cohomology, bundles and connections, Riemann manifolds, isometric actions, and symplectic and Poisson geometry.
(11815 views)