**Complex Integration and Cauchy's Theorem**

by G. N. Watson

**Publisher**: Cambridge University Press 1914**ISBN/ASIN**: 0486488144**Number of pages**: 100

**Description**:

This brief monograph by one of the great mathematicians of the early 20th century offers a single-volume compilation of propositions employed in proofs of Cauchy's theorem. Developing an arithmetical basis that avoids geometrical intuitions, Watson also provides a brief account of the various applications of the theorem to the evaluation of definite integrals.

Download or read it online for free here:

**Download link**

(multiple formats)

## Similar books

**Lectures on the Theory of Algebraic Functions of One Variable**

by

**M. Deuring**-

**Tata Institute of Fundamental Research**

We shall be dealing in these lectures with the algebraic aspects of the theory of algebraic functions of one variable. Since an algebraic function w(z) is defined by f(z,w)=0, the study of such functions should be possible by algebraic methods.

(

**9423**views)

**Lectures on Modular Functions of One Complex Variable**

by

**H. Maass**-

**Tata institute of Fundamental Research**

This is an elementary introduction to the theory of modular functions and modular forms. Basic facts from the theory of functions of a complex variable and some properties of the elementary transcendental functions are the only prerequisites.

(

**9794**views)

**Metrics on the Phase Space and Non-Selfadjoint Pseudo-Differential Operators**

by

**Nicolas Lerner**-

**BirkhĂ¤user**

This is a book on pseudodifferential operators, with emphasis on non-selfadjoint operators, a priori estimates and localization in the phase space. The first part of the book is accessible to graduate students with a decent background in Analysis.

(

**9941**views)

**Methods for Finding Zeros in Polynomials**

by

**Leif Mejlbro**-

**BookBoon**

Polynomials are the first class of functions that the student meets. Therefore, one may think that they are easy to handle. They are not in general! Topics as e.g. finding roots in a polynomial and the winding number are illustrated.

(

**10452**views)