Logo

Complex Integration and Cauchy's Theorem

Large book cover: Complex Integration and Cauchy's Theorem

Complex Integration and Cauchy's Theorem
by

Publisher: Cambridge University Press
ISBN/ASIN: 0486488144
Number of pages: 100

Description:
This brief monograph by one of the great mathematicians of the early 20th century offers a single-volume compilation of propositions employed in proofs of Cauchy's theorem. Developing an arithmetical basis that avoids geometrical intuitions, Watson also provides a brief account of the various applications of the theorem to the evaluation of definite integrals.

Home page url

Download or read it online for free here:
Download link
(multiple formats)

Similar books

Book cover: Lectures On The General Theory Of Integral FunctionsLectures On The General Theory Of Integral Functions
by - Chelsea Pub. Co.
These lectures give us, in the form of a number of elegant and illuminating theorems, the latest word of mathematical science on the subject of Integral Functions. They descend to details, they take us into the workshop of the working mathematician.
(6601 views)
Book cover: Calculus of Residua: Complex Functions Theory a-2Calculus of Residua: Complex Functions Theory a-2
by - BookBoon
This is the second part in the series of books on complex functions theory. From the table of contents: Introduction; Power Series; Harmonic Functions; Laurent Series and Residua; Applications of the Calculus of Residua; Index.
(11124 views)
Book cover: Theory of Functions of a Complex VariableTheory of Functions of a Complex Variable
by - Cambridge University Press
The present treatise is an attempt to give a consecutive account of what may fairly be deemed the principal branches of the whole subject. The book may assist mathematicians, by lessening the labour of acquiring a proper knowledge of the subject.
(5412 views)
Book cover: Elliptic Functions and Elliptic CurvesElliptic Functions and Elliptic Curves
by - Institut de Mathematiques de Jussieu
Contents: Introduction; Abel's Method; A Crash Course on Riemann Surfaces; Cubic curves; Elliptic functions; Theta functions; Construction of elliptic functions; Lemniscatology or Complex Multiplication by Z[i]; Group law on smooth cubic curves.
(8291 views)