Logo

Schwarzschild and Kerr Solutions of Einstein's Field Equation: an introduction

Small book cover: Schwarzschild and Kerr Solutions of Einstein's Field Equation: an introduction

Schwarzschild and Kerr Solutions of Einstein's Field Equation: an introduction
by

Publisher: arXiv
Number of pages: 96

Description:
Starting from Newton's gravitational theory, we give a general introduction into the spherically symmetric solution of Einstein's vacuum field equation, the Schwarzschild(-Droste) solution, and into one specific stationary axially symmetric solution, the Kerr solution.

Home page url

Download or read it online for free here:
Download link
(2.7MB, PDF)

Similar books

Book cover: Vector Analysis and the Theory of RelativityVector Analysis and the Theory of Relativity
by - Johns Hopkins press
This monograph is the outcome of lectures delivered to the graduate department of mathematics of The Johns Hopkins University. Considerations of space have made it somewhat condensed in form, but the mode of presentation is sufficiently novel.
(15070 views)
Book cover: Treatise on Differential Geometry and its role in Relativity TheoryTreatise on Differential Geometry and its role in Relativity Theory
by - arXiv.org
These notes will be helpful to undergraduate and postgraduate students in theoretical physics and in applied mathematics. Modern terminology in differential geometry has been discussed in the book with the motivation of geometrical way of thinking.
(2815 views)
Book cover: A No-Nonsense Introduction to General RelativityA No-Nonsense Introduction to General Relativity
by
General relativity has a reputation of being extremely difficult. This introduction is a very pragmatic affair, intended to give you some immediate feel for the language of GR. It does not substitute for a deep understanding -- that takes more work.
(8464 views)
Book cover: Gravitational Waves, Sources, and DetectorsGravitational Waves, Sources, and Detectors
by - arXiv
Notes of lectures for graduate students, covering the theory of linearized gravitational waves, their sources, and the prospects at the time for detecting gravitational waves. The lectures remain of interest for pedagogical reasons.
(9143 views)