Logo

Introduction to Mathematical Analysis

Small book cover: Introduction to Mathematical Analysis

Introduction to Mathematical Analysis
by

Publisher: Portland State University Library
ISBN-13: 9781312742840
Number of pages: 141

Description:
Our goal in this set of lecture notes is to provide students with a strong foundation in mathematical analysis. Such a foundation is crucial for future study of deeper topics of analysis. Students should be familiar with most of the concepts presented here after completing the calculus sequence. However, these concepts will be reinforced through rigorous proofs.

Home page url

Download or read it online for free here:
Download link
(1.3MB, PDF)

Similar books

Book cover: Introduction to Infinitesimal Analysis: Functions of One Real VariableIntroduction to Infinitesimal Analysis: Functions of One Real Variable
by - John Wiley & Sons
This volume is designed as a reference book for a course dealing with the fundamental theorems of infinitesimal calculus in a rigorous manner. The book may also be used as a basis for a rather short theoretical course on real functions.
(14810 views)
Book cover: Introduction to Lebesgue IntegrationIntroduction to Lebesgue Integration
by - Macquarie University
An introduction to some of the basic ideas in Lebesgue integration with the minimal use of measure theory. Contents: the real numbers and countability, the Riemann integral, point sets, the Lebesgue integral, monotone convergence theorem, etc.
(17449 views)
Book cover: Homeomorphisms in AnalysisHomeomorphisms in Analysis
by - American Mathematical Society
This book features the interplay of two main branches of mathematics: topology and real analysis. The text covers Lebesgue measurability, Baire classes of functions, differentiability, the Blumberg theorem, various theorems on Fourier series, etc.
(16466 views)
Book cover: Lectures on Lipschitz AnalysisLectures on Lipschitz Analysis
by
In these lectures, we concentrate on the theory of Lipschitz functions in Euclidean spaces. From the table of contents: Introduction; Extension; Differentiability; Sobolev spaces; Whitney flat forms; Locally standard Lipschitz structures.
(11858 views)