**Group Theory: Birdtracks, Lie's, and Exceptional Groups**

by Predrag Cvitanovic

**Publisher**: Princeton University Press 2008**ISBN/ASIN**: 0691118361**ISBN-13**: 9780691118369**Number of pages**: 285

**Description**:

If classical Lie groups preserve bilinear vector norms, what Lie groups preserve trilinear, quadrilinear, and higher order invariants? Answering this question from a fresh and original perspective, Predrag Cvitanovic takes the reader on the amazing, four-thousand-diagram journey through the theory of Lie groups. This book is the first to systematically develop, explain, and apply diagrammatic projection operators to construct all semi-simple Lie algebras, both classical and exceptional.

Download or read it online for free here:

**Download link**

(6MB, PDF)

## Similar books

**Theory of Groups of Finite Order**

by

**William Burnside**-

**Cambridge University Press**

After introducing permutation notation and defining group, the author discusses the simpler properties of group that are independent of their modes of representation; composition-series of groups; isomorphism of a group with itself; etc.

(

**8506**views)

**Introduction to Arithmetic Groups**

by

**Dave Witte Morris**-

**arXiv**

This revised version of a book in progress on arithmetic groups and locally symmetric spaces contains several additional chapters, including the proofs of three major theorems of G. A. Margulis (superrigidity, arithmeticity, and normal subgroups).

(

**8760**views)

**Galois Groups and Fundamental Groups**

by

**Leila Schneps**-

**Cambridge University Press**

This book contains eight articles which focus on presenting recently developed new aspects of the theory of Galois groups and fundamental groups, avoiding classical aspects which have already been developed at length in the standard literature.

(

**11587**views)

**Combinatorial Group Theory**

by

**Charles F. Miller III**-

**University of Melbourne**

Lecture notes for the subject Combinatorial Group Theory at the University of Melbourne. Contents: About groups; Free groups and presentations; Construction of new groups; Properties, embeddings and examples; Subgroup Theory; Decision Problems.

(

**12682**views)