Logo

Combinatorial Theory by Gian-Carlo Rota

Small book cover: Combinatorial Theory

Combinatorial Theory
by


Number of pages: 414

Description:
In 1998, Gian-Carlo Rota gave his famous course, Combinatorial Theory, at MIT for the last time. John N. Guidi taped the lectures and took notes which he then wrote up in an almost verbatim manner conveying the substance and some of the atmosphere of the course. Topics covered included sets, relations, enumeration, order, matching, matroids, and geometric probability.

Home page url

Download or read it online for free here:
Download link
(7.8MB, PDF)

Similar books

Book cover: Matroid DecompositionMatroid Decomposition
by - Leibniz
Matroids were introduced in 1935 as an abstract generalization of graphs and matrices. Matroid decomposition covers the area of the theory dealing with decomposition and composition of matroids. The exposition is clear and simple.
(9904 views)
Book cover: Algebraic and Geometric Methods in Enumerative CombinatoricsAlgebraic and Geometric Methods in Enumerative Combinatorics
by - arXiv
The main goal of this survey is to state clearly and concisely some of the most useful tools in algebraic and geometric enumeration, and to give many examples that quickly and concretely illustrate how to put these tools to use.
(7536 views)
Book cover: Counting Rocks! An Introduction to CombinatoricsCounting Rocks! An Introduction to Combinatorics
by - arXiv.org
This textbook is an interactive introduction to combinatorics at the undergraduate level. The major topics in this text are counting problems, proof techniques, recurrence relations and generating functions, and an introduction to graph theory.
(3331 views)
Book cover: Combinatorics Through Guided DiscoveryCombinatorics Through Guided Discovery
by - Dartmouth College
This is an introduction to combinatorial mathematics, also known as combinatorics. The book focuses especially but not exclusively on the part of combinatorics that mathematicians refer to as 'counting'. The book consists almost entirely of problems.
(9770 views)