**An Introduction to Real Analysis**

by John K. Hunter

**Publisher**: University of California Davis 2014**Number of pages**: 305

**Description**:

These are some notes on introductory real analysis. They cover the properties of the real numbers, sequences and series of real numbers, limits of functions, continuity, differentiability, sequences and series of functions, and Riemann integration.

Download or read it online for free here:

**Download link**

(2.5MB, PDF)

## Similar books

**Introduction to Lebesgue Integration**

by

**W W L Chen**-

**Macquarie University**

An introduction to some of the basic ideas in Lebesgue integration with the minimal use of measure theory. Contents: the real numbers and countability, the Riemann integral, point sets, the Lebesgue integral, monotone convergence theorem, etc.

(

**16939**views)

**The Foundations of Analysis**

by

**Larry Clifton**-

**arXiv**

This is a detailed introduction to the real number system from a categorical perspective. We begin with the categorical definition of the natural numbers, review the Eudoxus theory of ratios, and then define the positive real numbers categorically.

(

**8620**views)

**Real Analysis**

by

**A. M. Bruckner, J. B. Bruckner, B. S. Thomson**-

**Prentice Hall**

This book provides an introductory chapter containing background material as well as a mini-overview of much of the course, making the book accessible to readers with varied backgrounds. It uses a wealth of examples to illustrate important concepts.

(

**20689**views)

**How We Got From There to Here: A Story of Real Analysis**

by

**Robert Rogers, Eugene Boman**-

**Open SUNY Textbooks**

This book covers the major topics typically addressed in an introductory undergraduate course in real analysis in their historical order. The book provides guidance for transforming an intuitive understanding into rigorous mathematical arguments.

(

**8323**views)