Logo

An Introduction to Lie Group Integrators

Small book cover: An Introduction to Lie Group Integrators

An Introduction to Lie Group Integrators
by

Publisher: arXiv
Number of pages: 28

Description:
We give a short and elementary introduction to Lie group methods. A selection of applications of Lie group integrators are discussed. Finally, a family of symplectic integrators on cotangent bundles of Lie groups is presented and the notion of discrete gradient methods is generalised to Lie groups.

Home page url

Download or read it online for free here:
Download link
(2.3MB, PDF)

Similar books

Book cover: Lectures on Discrete Subgroups of Lie GroupsLectures on Discrete Subgroups of Lie Groups
by - Tata Institute of Fundamental Research
Contents: Preliminaries; Complexification of a real Linear Lie Group; Intrinsic characterization of K* and E; R-regular elements; Discrete Subgroups; Some Ergodic Properties of Discrete Subgroups; Real Forms of Semi-simple Algebraic Groups; etc.
(7867 views)
Book cover: Group Theory: Birdtracks, Lie's, and Exceptional GroupsGroup Theory: Birdtracks, Lie's, and Exceptional Groups
by - Princeton University Press
A book on the theory of Lie groups for researchers and graduate students in theoretical physics and mathematics. It answers what Lie groups preserve trilinear, quadrilinear, and higher order invariants. Written in a lively and personable style.
(14192 views)
Book cover: Lectures on Lie Groups and Representations of Locally Compact GroupsLectures on Lie Groups and Representations of Locally Compact Groups
by - Tata Institute of Fundamental Research
We consider some heterogeneous topics relating to Lie groups and the general theory of representations of locally compact groups. We have rigidly adhered to the analytic approach in establishing the relations between Lie groups and Lie algebras.
(9916 views)
Book cover: Lecture Notes in Lie GroupsLecture Notes in Lie Groups
by - arXiv
These notes are designed for a 1-semester third year or graduate course in mathematics, physics, or biology. We give both physical and medical examples of Lie groups. The only necessary background are advanced calculus and linear algebra.
(9102 views)