Mathematical Concepts of Quantum Mechanics
by S. Gustafson, I.M. Sigal
Publisher: University of Toronto 2001
Number of pages: 185
Description:
These lectures cover a one term course taken by a mixed group of students specializing either in mathematics or physics. We decided to select material which illustrates an interplay of ideas from various fields of mathematics, such as operator theory, probability, differential equations, and differential geometry.
Download or read it online for free here:
Download link
(2.3MB, PDF)
Similar books

by N.P. Landsman - arXiv
A graduate-level introduction to C*-algebras, Hilbert C*-modules, vector bundles, and induced representations of groups and C*-algebras, with applications to quantization theory, phase space localization, and configuration space localization.
(13978 views)

by Ingemar Bengtsson - Stockholms universitet, Fysikum
These are the lecture notes from a graduate course in the geometry of quantum mechanics. The idea was to introduce the mathematics in its own right, but not to introduce anything that is not directly relevant to the subject.
(15001 views)

by Teiko Heinosaari, Mario Ziman - arXiv
In this text the authors introduce the quantum theory understood as a mathematical model describing quantum experiments. This is a mathematically clear and self-containing explanation of the main concepts of the modern language of quantum theory.
(13275 views)

by Gerald Teschl - American Mathematical Society
This is a self-contained introduction to spectral theory of unbounded operators in Hilbert space with full proofs and minimal prerequisites: Only a solid knowledge of advanced calculus and a one-semester introduction to complex analysis are required.
(16677 views)