Logo

Dynamical and Hamiltonian Formulation of General Relativity

Small book cover: Dynamical and Hamiltonian Formulation of General Relativity

Dynamical and Hamiltonian Formulation of General Relativity
by

Publisher: arXiv.org
Number of pages: 76

Description:
This contribution introduces the reader to the reformulation of Einstein's field equations of General Relativity as a constrained evolutionary system of Hamiltonian type and discusses some of its uses, together with some technical and conceptual aspects. Attempts were made to keep the presentation self contained and accessible to first-year graduate students.

Home page url

Download or read it online for free here:
Download link
(1.1MB, PDF)

Similar books

Book cover: Recent Developments in Gravitational Collapse and Spacetime SingularitiesRecent Developments in Gravitational Collapse and Spacetime Singularities
by - arXiv
The research of recent years has provided considerable clarity and insight on stellar collapse, black holes and the nature and structure of spacetime singularities. In this text, the authors discuss several of these developments here.
(11509 views)
Book cover: An Advanced Course in General RelativityAn Advanced Course in General Relativity
by - University of Guelph
These lecture notes are suitable for a one-semester course at the graduate level. Table of contents: Fundamentals; Geodesic congruences; hypersurfaces; Lagrangian and Hamiltonian formulations of general relativity; Black holes.
(13178 views)
Book cover: General Relativity NotesGeneral Relativity Notes
by - MIT
Working with GR requires some understanding of differential geometry. In this text we will develop the essential mathematics needed to describe physics in curved spacetime. These notes assume familiarity with special relativity.
(12578 views)
Book cover: Post-Newtonian Theory for the Common ReaderPost-Newtonian Theory for the Common Reader
by - University of Guelph
From the table of contents: Preliminaries; Integration techniques; First post-Minkowskian approximation; Second post-Minkowskian approximation; Equations of motion; Gravitational waves; Energy radiated and radiation reaction.
(10653 views)