**Manifolds: Current Research Areas**

by Paul Bracken (ed.)

**Publisher**: InTech 2017**ISBN-13**: 9789535128724**Number of pages**: 158

**Description**:

Differential geometry is a very active field of research and has many applications to areas such as physics and gravity, for example. The papers in this book cover a number of subjects which will be of interest to workers in these areas.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Advances in Discrete Differential Geometry**

by

**Alexander I. Bobenko (ed.)**-

**Springer**

This is the book on a newly emerging field of discrete differential geometry. It surveys the fascinating connections between discrete models in differential geometry and complex analysis, integrable systems and applications in computer graphics.

(

**8181**views)

**Lectures on Fibre Bundles and Differential Geometry**

by

**J.L. Koszul**-

**Tata Institute of Fundamental Research**

From the table of contents: Differential Calculus; Differentiable Bundles; Connections on Principal Bundles; Holonomy Groups; Vector Bundles and Derivation Laws; Holomorphic Connections (Complex vector bundles, Almost complex manifolds, etc.).

(

**10575**views)

**Exterior Differential Systems and Euler-Lagrange Partial Differential Equations**

by

**R. Bryant, P. Griffiths, D. Grossman**-

**University Of Chicago Press**

The authors present the results of their development of a theory of the geometry of differential equations, focusing especially on Lagrangians and Poincare-Cartan forms. They also cover certain aspects of the theory of exterior differential systems.

(

**17400**views)

**Introduction to Homological Geometry**

by

**Martin A. Guest**-

**arXiv**

This is an introduction to some of the analytic aspects of quantum cohomology. The small quantum cohomology algebra, regarded as an example of a Frobenius manifold, is described without going into the technicalities of a rigorous definition.

(

**10074**views)