**Symplectic, Poisson, and Noncommutative Geometry**

by Tohru Eguchi, et al.

**Publisher**: Cambridge University Press 2014**ISBN-13**: 9781107056411**Number of pages**: 290

**Description**:

Symplectic geometry has its origin in physics, but has flourished as an independent subject in mathematics, together with its offspring, symplectic topology. Symplectic methods have even been applied back to mathematical physics; for example, Floer theory has contributed new insights to quantum field theory.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Lectures on Holomorphic Curves in Symplectic and Contact Geometry**

by

**Chris Wendl**-

**arXiv**

This is a set of expository lecture notes created originally for a graduate course on holomorphic curves. From the table of contents: Introduction; Local properties; Fredholm theory; Moduli spaces; Bubbling and nonsqueezing.

(

**11804**views)

**Symplectic Geometry**

by

**Ana Cannas da Silva**-

**Princeton University**

An overview of symplectic geometry – the geometry of symplectic manifolds. From a language of classical mechanics, symplectic geometry became a central branch of differential geometry and topology. This survey gives a partial flavor on this field.

(

**13261**views)

**Lectures on Symplectic Geometry**

by

**Ana Cannas da Silva**-

**Springer**

An introduction to symplectic geometry and topology, it provides a useful and effective synopsis of the basics of symplectic geometry and serves as the springboard for a prospective researcher. The text is written in a clear, easy-to-follow style.

(

**15505**views)

**First Steps Towards a Symplectic Dynamics**

by

**Barney Bramham, Helmut Hofer**-

**arXiv**

Both dynamical systems and symplectic geometry have rich theories and the time seems ripe to develop the common core with integrated ideas from both fields. We discuss problems which show how dynamical systems and symplectic ideas come together.

(

**11942**views)