Bayesian Field Theory
by J. C. Lemm
Publisher: arXiv.org 2000
Number of pages: 200
Description:
Bayesian field theory denotes a nonparametric Bayesian approach for learning functions from observational data. Based on the principles of Bayesian statistics, a particular Bayesian field theory is defined by combining two models: a likelihood model, providing a probabilistic description of the measurement process, and a prior model, providing the information necessary to generalize from training to non-training data.
Download or read it online for free here:
Download link
(1.7MB, PDF)
Similar books

by D. Pollard - Springer
Selected parts of empirical process theory, with applications to mathematical statistics. The book describes the combinatorial ideas needed to prove maximal inequalities for empirical processes indexed by classes of sets or classes of functions.
(16873 views)

by Klaus Bichteler - University of Texas
Written for graduate students of mathematics, physics, electrical engineering, and finance. The students are expected to know the basics of point set topology up to Tychonoff's theorem, general integration theory, and some functional analysis.
(15243 views)

by Allen B. Downey - Green Tea Press
Think Stats is an introduction to Probability and Statistics for Python programmers. This new book emphasizes simple techniques you can use to explore real data sets and answer interesting statistical questions. Basic skills in Python are assumed.
(24340 views)

by D. A. Levin, Y. Peres, E. L. Wilmer - American Mathematical Society
An introduction to the modern approach to the theory of Markov chains. The main goal of this approach is to determine the rate of convergence of a Markov chain to the stationary distribution as a function of the size and geometry of the state space.
(15482 views)