Elements of Causal Inference: Foundations and Learning Algorithms
by J. Peters, D. Janzing, B. Schölkopf
Publisher: The MIT Press 2017
ISBN-13: 9780262037310
Number of pages: 289
Description:
This book offers a self-contained and concise introduction to causal models and how to learn them from data. After explaining the need for causal models and discussing some of the principles underlying causal inference, the book teaches readers how to use causal models: how to compute intervention distributions, how to infer causal models from observational and interventional data, and how causal ideas could be exploited for classical machine learning problems.
Download or read it online for free here:
Download link
(21MB, PDF)
Similar books
Machine Learning for Data Streamsby Albert Bifet, et al. - The MIT Press
This book presents algorithms and techniques used in data stream mining and real-time analytics. Taking a hands-on approach, the book demonstrates the techniques using MOA, allowing readers to try out the techniques after reading the explanations.
(8446 views)
Optimal and Learning Control for Autonomous Robotsby Jonas Buchli, et al. - arXiv.org
The starting point is the formulation of of an optimal control problem and deriving the different types of solutions and algorithms from there. These lecture notes aim at supporting this unified view with a unified notation wherever possible.
(7239 views)
A Survey of Statistical Network Modelsby A. Goldenberg, A.X. Zheng, S.E. Fienberg, E.M. Airoldi - arXiv
We begin with the historical development of statistical network modeling and then we introduce some examples in the network literature. Our subsequent discussion focuses on prominent static and dynamic network models and their interconnections.
(10275 views)
Information Theory, Inference, and Learning Algorithmsby David J. C. MacKay - Cambridge University Press
A textbook on information theory, Bayesian inference and learning algorithms, useful for undergraduates and postgraduates students, and as a reference for researchers. Essential reading for students of electrical engineering and computer science.
(32375 views)