Analytic Combinatorics
by Philippe Flajolet, Robert Sedgewick
Publisher: Cambridge University Press 2008
ISBN/ASIN: 0521898064
ISBN-13: 9780521898065
Number of pages: 822
Description:
Analytic Combinatorics is a self-contained treatment of the mathematics underlying the analysis of discrete structures, which has emerged over the past several decades as an essential tool in the understanding of properties of computer programs and scientific models with applications in physics, biology and chemistry. Thorough treatment of a large number of classical applications is an essential aspect of the presentation. Written by the leaders in the field of analytic combinatorics, this text is certain to become the definitive reference on the topic. The text is complemented with exercises, examples, appendices and notes to aid understanding therefore, it can be used as the basis for an advanced undergraduate or a graduate course on the subject, or for self-study.
Download or read it online for free here:
Download link
(9.8MB, PDF)
Similar books
by Richard P. Stanley - MIT
Contents: Walks in graphs; Cubes and the Radon transform; Random walks; The Sperner property; Group actions on boolean algebras; Young diagrams and q-binomial coefficients; Enumeration under group action; A glimpse of Young tableaux; etc.
(9720 views)
by Federico Ardila - arXiv
The main goal of this survey is to state clearly and concisely some of the most useful tools in algebraic and geometric enumeration, and to give many examples that quickly and concretely illustrate how to put these tools to use.
(7817 views)
by Klaus Truemper - Leibniz
Matroids were introduced in 1935 as an abstract generalization of graphs and matrices. Matroid decomposition covers the area of the theory dealing with decomposition and composition of matroids. The exposition is clear and simple.
(10163 views)
by Mitchel T. Keller, William T. Trotter - Georgia Institute of Technology
The purpose of the course is to give students a broad exposure to combinatorial mathematics, using applications to emphasize fundamental concepts and techniques. Our approach to the course is to show students the beauty of combinatorics.
(9788 views)