Category Theory in Context
by Emily Riehl
Publisher: Dover Publications 2016
Number of pages: 258
Description:
This concise, original text for a one-semester introduction to the subject is derived from courses that author Emily Riehl taught at Harvard and Johns Hopkins Universities. The treatment introduces the essential concepts of category theory: categories, functors, natural transformations, the Yoneda lemma, limits and colimits, adjunctions, monads, Kan extensions, and other topics.
Download or read it online for free here:
Download link
(1.3MB, PDF)
Similar books

by Pierre Schapira - UPMC
These notes introduce the language of categories and present the basic notions of homological algebra, first from an elementary point of view, next with a more sophisticated approach, with the introduction of triangulated and derived categories.
(11547 views)

by Peter Smith - Logic Matters
I hope that what is here may prove useful to others starting to get to grips with category theory. This text is intended to be relatively accessible; in particular, it presupposes rather less mathematical background than some texts on categories.
(9686 views)

by D.E. Rydeheard, R.M. Burstall
The book is a bridge-building exercise between computer programming and category theory. Basic constructions of category theory are expressed as computer programs. It is a first attempt at connecting the abstract mathematics with concrete programs.
(20577 views)

by Sen Hu, Xuexing Lu, Yu Ye - arXiv
In this paper, we reveal the combinatorial nature of tensor calculus for strict tensor categories and show that there exists a monad which is described by the coarse-graining of graphs and characterizes the algebraic nature of tensor calculus.
(7681 views)