**The Hundred-Page Machine Learning Book**

by Andriy Burkov

2019**Number of pages**: 160

**Description**:

This is the first successful attempt to write an easy to read book on machine learning that isn't afraid of using math. It's also the first attempt to squeeze a wide range of machine learning topics in a systematic way and without loss in quality.

Download or read it online for free here:

**Read online**

(online reading)

## Similar books

**Modeling Agents with Probabilistic Programs**

by

**Owain Evans, et al.**-

**AgentModels.org**

This book describes and implements models of rational agents for (PO)MDPs and Reinforcement Learning. One motivation is to create richer models of human planning, which capture human biases. The book assumes basic programming experience.

(

**6099**views)

**Statistical Foundations of Machine Learning**

by

**Gianluca Bontempi, Souhaib Ben Taieb**

This handbook aims to present the statistical foundations of machine learning intended as the discipline which deals with the automatic design of models from data. This manuscript aims to find a good balance between theory and practice.

(

**9540**views)

**The Elements of Statistical Learning: Data Mining, Inference, and Prediction**

by

**T. Hastie, R. Tibshirani, J. Friedman**-

**Springer**

This book brings together many of the important new ideas in learning, and explains them in a statistical framework. The authors emphasize the methods and their conceptual underpinnings rather than their theoretical properties.

(

**40994**views)

**Statistical Learning and Sequential Prediction**

by

**Alexander Rakhlin, Karthik Sridharan**-

**University of Pennsylvania**

This text focuses on theoretical aspects of Statistical Learning and Sequential Prediction. The minimax approach, which we emphasize throughout the course, offers a systematic way of comparing learning problems. We will discuss learning algorithms...

(

**6942**views)