Logo

Progress in Commutative Algebra 2: Closures, Finiteness and Factorization

Large book cover: Progress in Commutative Algebra 2: Closures, Finiteness and Factorization

Progress in Commutative Algebra 2: Closures, Finiteness and Factorization
by

Publisher: De Gruyter Open
ISBN-13: 9783110278606
Number of pages: 315

Description:
This volume contains surveys on aspects of closure operations, finiteness conditions and factorization. Closure operations on ideals and modules are a bridge between noetherian and nonnoetherian commutative algebra. It contains a nice guide to closure operations by Epstein, but also contains an article on test ideals by Schwede and Tucker and one by Enescu which discusses the action of the Frobenius on finite dimensional vector spaces both of which are related to tight closure.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: Lectures on Commutative AlgebraLectures on Commutative Algebra
by - Indian Institute of Technology, Bombay
These lecture notes attempt to give a rapid review of the rudiments of classical commutative algebra. Topics covered: rings and modules, Noetherian rings, integral extensions, Dedekind domains, and primary decomposition of modules.
(5955 views)
Book cover: Frobenius Splitting in Commutative AlgebraFrobenius Splitting in Commutative Algebra
by - arXiv
Frobenius splitting has inspired a vast arsenal of techniques in commutative algebra, algebraic geometry, and representation theory. The purpose of these lectures is to give a gentle introduction to Frobenius splitting for beginners.
(3345 views)
Book cover: A Quick Review of Commutative AlgebraA Quick Review of Commutative Algebra
by - Indian Institute of Technology, Bombay
These notes give a rapid review of the rudiments of classical commutative algebra. Some of the main results whose proofs are outlined here are: Hilbert basis theorem, primary decomposition of ideals in noetherian rings, Krull intersection theorem.
(7168 views)
Book cover: Theory and Applications of Lattice Point Methods for Binomial IdealsTheory and Applications of Lattice Point Methods for Binomial Ideals
by - arXiv
This is a survey of lattice point methods for binomial ideals. It is aimed at students and researchers in algebra; it includes many examples, open problems, and elementary introductions to the motivations and background from outside of algebra.
(6291 views)