Logo

Random Differential Equations in Scientific Computing

Large book cover: Random Differential Equations in Scientific Computing

Random Differential Equations in Scientific Computing
by

Publisher: De Gruyter Open
ISBN/ASIN: 8376560255
Number of pages: 650

Description:
This book is a holistic and self-contained treatment of the analysis and numerics of random differential equations from a problem-centred point of view. An interdisciplinary approach is applied by considering state-of-the-art concepts of both dynamical systems and scientific computing.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: Perturbation Theory of Dynamical SystemsPerturbation Theory of Dynamical Systems
by - arXiv
These are lecture notes for undergraduate Mathematics and Physics students. They cover a few selected topics from perturbation theory at an introductory level: Bifurcations and Unfolding; Regular Perturbation Theory; Singular Perturbation Theory.
(3751 views)
Book cover: Invitation to Dynamical SystemsInvitation to Dynamical Systems
by - Prentice Hall College Div
Author invites readers from a wide range of backgrounds to explore the beauty and excitement of dynamical systems. Written for readers who want to continue exploring mathematics beyond linear algebra, but are not ready for highly abstract material.
(12716 views)
Book cover: Introduction to the Theory of Infinite-Dimensional Dissipative SystemsIntroduction to the Theory of Infinite-Dimensional Dissipative Systems
by - ACTA
An introduction to infinite-dimensional dissipative dynamical systems. The book outlines a variety of tools applied in the study of nonlinear dynamical distributed systems. The results have applications to many areas of physics and engineering.
(8049 views)
Book cover: The Hopf Bifurcation and Its ApplicationsThe Hopf Bifurcation and Its Applications
by - Springer
The goal of these notes is to give a reasonably complete, although not exhaustive, discussion of what is commonly referred to as the Hopf bifurcation with applications to specific problems, including stability calculations.
(9900 views)