**Finite Euclidean and Non-Euclidean Geometries**

by Rene De Vogelaere

**Publisher**: arXiv 2019**Number of pages**: 778

**Description**:

The purpose of this book is to give an exposition of geometry, from a point of view which complements Klein's Erlangen program. The emphasis is on extending the classical Euclidean geometry to the finite case, but it goes beyond that.

Download or read it online for free here:

**Download link**

(9.2MB, PDF)

## Similar books

**Geometry, Topology and Physics**

by

**Maximilian Kreuzer**-

**Technische Universitat Wien**

From the table of contents: Topology (Homotopy, Manifolds, Surfaces, Homology, Intersection numbers and the mapping class group); Differentiable manifolds; Riemannian geometry; Vector bundles; Lie algebras and representations; Complex manifolds.

(

**17766**views)

**The Axioms Of Descriptive Geometry**

by

**Alfred North Whitehead**-

**Cambridge University Press**

In this book, after the statement of the axioms, the ideas considered are those concerning the association of Projective and Descriptive Geometry by means of ideal points, point to point correspondence, congruence, distance, and metrical geometry.

(

**8837**views)

**Fundamentals of Geometry**

by

**Oleg A. Belyaev**-

**Moscow State University**

A continually updated book devoted to rigorous axiomatic exposition of the basic concepts of geometry. Self-contained comprehensive treatment with detailed proofs should make this book both accessible and useful to a wide audience of geometry lovers.

(

**22047**views)

**Geometric Theorems and Arithmetic Functions**

by

**Jozsef Sandor**-

**American Research Press**

Contents: on Smarandache's Podaire theorem, Diophantine equation, the least common multiple of the first positive integers, limits related to prime numbers, a generalized bisector theorem, values of arithmetical functions and factorials, and more.

(

**18412**views)