Entropy and Information Theory
by Robert M. Gray
Publisher: Springer 2008
ISBN/ASIN: 1441979697
Number of pages: 313
Description:
This book is devoted to the theory of probabilistic information measures and their application to coding theorems for information sources and noisy channels. The eventual goal is a general development of Shannon's mathematical theory of communication, but much of the space is devoted to the tools and methods required to prove the Shannon coding theorems. This is the only up-to-date treatment of traditional information theory emphasizing ergodic theory.
Download or read it online for free here:
Download link
(1.5MB, PDF)
Similar books

by Frederic Barbaresco, Ali Mohammad-Djafari - MDPI AG
The aim of this book is to provide an overview of current work addressing topics of research that explore the geometric structures of information and entropy. This survey will motivate readers to explore the emerging domain of Science of Information.
(8231 views)

by Peter D. Gruenwald, Paul M.B. Vitanyi - CWI
We introduce algorithmic information theory, also known as the theory of Kolmogorov complexity. We explain this quantitative approach to defining information and discuss the extent to which Kolmogorov's and Shannon's theory have a common purpose.
(11038 views)

by Keith Devlin - ESSLLI
An introductory, comparative account of three mathematical approaches to information: the classical quantitative theory of Claude Shannon, a qualitative theory developed by Fred Dretske, and a qualitative theory introduced by Barwise and Perry.
(13335 views)

by David Feldman - College of the Atlantic
This e-book is a brief tutorial on information theory, excess entropy and statistical complexity. From the table of contents: Background in Information Theory; Entropy Density and Excess Entropy; Computational Mechanics.
(14489 views)