**The Pythagorean Theorem: Crown Jewel of Mathematics**

by John C. Sparks

**Publisher**: AuthorHouse 2008**Number of pages**: 190

**Description**:

The author chronologically traces the Pythagorean Theorem from a conjectured beginning, through 4000 years of Pythagorean proofs, from all major proof categories, 20 proofs in total. The text presents several mathematical results closely allied to the Pythagorean Theorem along with some major Pythagorean "spin-offs" such as trigonometry. The books contains some classic puzzles, amusements, and applications. An epilogue summarizes the importance of the Pythagorean theorem and suggests paths for further exploration.

Download or read it online for free here:

**Download link**

(1.5MB, PDF)

## Similar books

**An Elementary Treatise on Conic Sections**

by

**Charles Smith**-

**The Macmillan Company**

In the following work I have investigated the more elementary properties of the Ellipse, Parabola, and Hyperbola, defined with reference to a focus and directrix, before considering the General Equation of the Second Degree...

(

**6473**views)

**Theory of Symmetry and Ornament**

by

**Slavik V. Jablan**-

**Matematicki Institut**

This work is a comparative analysis of the theory of discrete and visually presentable continuous symmetry groups in the plane E2 or in E2\{O}: Symmetry Groups of Rosettes, Friezes and Ornaments, Similarity Symmetry Groups in E2, etc.

(

**9801**views)

**First Principles of Symmetrical Beauty**

by

**David Ramsay Hay**-

**W. Blackwood and sons**

From the table of contents: Nature of the science of aesthetics explained; Plane figures the bases of all forms; The isosceles triangle; Universal application of the composite ellipse in the arts of ornamental design; and more.

(

**10716**views)

**Euclid's Elements of Geometry**

by

**J.L. Heiberg, R. Fitzpatrick**

Euclid's Elements is the most famous mathematical work of classical antiquity, and also has the distinction of being the oldest continuously used mathematical textbook. The main subjects of the work are geometry, proportion, and number theory.

(

**7548**views)