**A Introduction to Proofs and the Mathematical Vernacular**

by Martin Day

**Publisher**: Virginia Tech 2016**Number of pages**: 147

**Description**:

The students taking this course have completed a standard technical calculus sequence. We now want them to start thinking in terms of properties of mathematical objects and logical deduction, and to get them used to writing in the customary language of mathematics. Another goal is to train students to read more involved proofs such as they may encounter in textbooks and journal articles.

Download or read it online for free here:

**Download link**

(1.2MB, PDF)

## Similar books

**Proofs in Mathematics**

by

**Alexander Bogomolny**-

**Interactive Mathematics Miscellany and Puzzles**

I'll distinguish between two broad categories. The first is characterized by simplicity. In the second group the proofs will be selected mainly for their charm. Most of the proofs in this book should be accessible to a middle grade school student.

(

**13774**views)

**An Inquiry-Based Introduction to Proofs**

by

**Jim Hefferon**-

**Saint Michael's College**

Introduction to Proofs is a Free undergraduate text. It is inquiry-based, sometimes called the Moore method or the discovery method. It consists of a sequence of exercises, statements for students to prove, along with a few definitions and remarks.

(

**10829**views)

**Book of Proof**

by

**Richard Hammack**-

**Virginia Commonwealth University**

This textbook is an introduction to the standard methods of proving mathematical theorems. It is written for an audience of mathematics majors at Virginia Commonwealth University, and is intended to prepare the students for more advanced courses.

(

**38613**views)

**A Gentle Introduction to the Art of Mathematics**

by

**Joseph Fields**-

**Southern Connecticut State University**

The point of this book is to help you with the transition from doing math at an elementary level (concerned mostly with solving problems) to doing math at an advanced level (which is much more concerned with axiomatic systems and proving statements).

(

**17380**views)