**Jacobi Operators and Complete Integrable Nonlinear Lattices**

by Gerald Teschl

**Publisher**: American Mathematical Society 1999**ISBN/ASIN**: 0821819402**ISBN-13**: 9780821819401**Number of pages**: 369

**Description**:

This book is intended to serve both as an introduction and a reference to spectral and inverse spectral theory of Jacobi operators (i.e., second order symmetric difference operators) and applications of these theories to the Toda and Kac-van Moerbeke hierarchy. Starting from second order difference equations we move on to self-adjoint operators and develop discrete Weyl-Titchmarsh-Kodaira theory, covering all classical aspects like Weyl m-functions, spectral functions, the moment problem, inverse spectral theory, and uniqueness results.

Download or read it online for free here:

**Download link**

(2.6MB, PDF)

## Similar books

**Problems in Mathematical Analysis**

by

**B. P. Demidovich**-

**MIR Publishers**

This collection of problems and exercises in mathematical analysis covers the maximum requirements of general courses in higher mathematics for higher technical schools. It contains over 3,000 problems covering all branches of higher mathematics.

(

**27096**views)

**Real Numbers and Fascinating Fractions**

by

**N. M. Beskin**

This text introduces the interesting and valuable concept of continued fractions. Contents: Two Historical Puzzles; Formation of Continued Fractions; Convergents; Non-terminating Continued Fractions; Approximation of Real Numbers.

(

**15734**views)

**Advanced Calculus and Analysis**

by

**Ian Craw**-

**University of Aberdeen**

Introductory calculus course, with some leanings to analysis. It covers sequences, monotone convergence, limits, continuity, differentiability, infinite series, power series, differentiation of functions of several variables, and multiple integrals.

(

**29855**views)

**Lecture Notes on the Theory of Distributions**

by

**Guenther Hoermann, Roland Steinbauer**-

**Universitaet Wien**

From the table of contents: 1. Test Functions and Distributions; 2. Differentiation, Differential Operators; 3. Basic Constructions; 4. Convolution; 5. Fourier Transform and Temperate Distributions; 6. Regularity; 7. Fundamental Solutions.

(

**10099**views)