**High-dimensional Knot Theory**

by Andrew Ranicki

**Publisher**: Springer 1998**ISBN/ASIN**: 3540633898**ISBN-13**: 9783540633891**Number of pages**: 693

**Description**:

This book is devoted entirely to high-dimensional knot theory. It actually has two aims: (1) to serve as an introduction to high-dimensional knot theory, using surgery theory to provide a systematic exposition, (2) to serve as an introduction to algebraic surgery theory, using high-dimensional knots as the geometric motivation.

Download or read it online for free here:

**Download link**

(3MB, PDF)

## Similar books

**Algebraic and Geometric Surgery**

by

**Andrew Ranicki**-

**Oxford University Press**

Surgery theory is the standard method for the classification of high-dimensional manifolds, where high means 5 or more. This book aims to be an entry point to surgery theory for a reader who already has some background in topology.

(

**10118**views)

**Math That Makes You Go Wow**

by

**M. Boittin, E. Callahan, D. Goldberg, J. Remes**-

**Ohio State University**

This is an innovative project by a group of Yale undergraduates: A Multi-Disciplinary Exploration of Non-Orientable Surfaces. The course is designed to be included as a short segment in a late middle school or early high school math course.

(

**14796**views)

**Knot Invariants and Higher Representation Theory**

by

**Ben Webster**-

**arXiv**

We construct knot invariants categorifying the quantum knot variants for all representations of quantum groups. We show that these invariants coincide with previous invariants defined by Khovanov for sl_2 and sl_3 and by Mazorchuk-Stroppel...

(

**7211**views)

**Geometric Topology: Localization, Periodicity and Galois Symmetry**

by

**Dennis Sullivan**-

**Springer**

In 1970, Sullivan circulated this set of notes introducing localization and completion of topological spaces to homotopy theory, and other important concepts. The notes remain worth reading for the fresh picture they provide for geometric topology.

(

**9809**views)