High-dimensional Knot Theory
by Andrew Ranicki
Publisher: Springer 1998
ISBN/ASIN: 3540633898
ISBN-13: 9783540633891
Number of pages: 693
Description:
This book is devoted entirely to high-dimensional knot theory. It actually has two aims: (1) to serve as an introduction to high-dimensional knot theory, using surgery theory to provide a systematic exposition, (2) to serve as an introduction to algebraic surgery theory, using high-dimensional knots as the geometric motivation.
Download or read it online for free here:
Download link
(3MB, PDF)
Similar books

by Danny Calegari - Oxford University Press
The book gives an exposition of the 'pseudo-Anosov' theory of foliations of 3-manifolds. This theory generalizes Thurston's theory of surface automorphisms, and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions.
(13080 views)

by William P Thurston - Mathematical Sciences Research Institute
The text describes the connection between geometry and lowdimensional topology, it is useful to graduate students and mathematicians working in related fields, particularly 3-manifolds and Kleinian groups. Much of the material or technique is new.
(19205 views)

by David Bachman - arXiv
This is a textbook on differential forms. The primary target audience is sophomore level undergraduates enrolled in a course in vector calculus. Later chapters will be of interest to advanced undergraduate and beginning graduate students.
(16886 views)

by Jonathan Hillman - arXiv
The goal of the book is to characterize algebraically the closed 4-manifolds that fibre nontrivially or admit geometries in the sense of Thurston, or which are obtained by surgery on 2-knots, and to provide a reference for the topology of such knots.
(12755 views)