Real Variables: With Basic Metric Space Topology
by Robert B. Ash
Publisher: Institute of Electrical & Electronics Engineering 2007
ISBN/ASIN: 0486472205
Number of pages: 213
Description:
This is a text for a first course in real variables for students of engineering, physics, and economics, who need to know real analysis in order to cope with the professional literature in their fields. The book tends to avoid standard mathematical writing, with its emphasis on formalism, but a certain amount of abstraction is unavoidable for a coherent presentation.
Download or read it online for free here:
Download link
(79MB, PDF)
Similar books

by Sergio Salbany, Todor Todorov - arXiv
We present Nonstandard Analysis in the framework of the superstructure of a given infinite set. We also present several applications of this axiomatic approach to point-set topology. Some of the topological topics seem to be new in the literature.
(7741 views)

by Alex Kuronya
Contents: Basic concepts; Constructing topologies; Connectedness; Separation axioms and the Hausdorff property; Compactness and its relatives; Quotient spaces; Homotopy; The fundamental group and some applications; Covering spaces; etc.
(8606 views)

by Victor Porton - Mathematics21.org
I introduce the concepts of funcoids which generalize proximity spaces and reloids which generalize uniform spaces. Funcoid is generalized concept of proximity, the concept of reloid is cleared from superfluous details concept of uniformity.
(4466 views)

by StevenHurder, DaveMarker - University of Illinois at Chicago
These notes are a supplement for the 'standard undergraduate course' in Analysis. The aim is to present a more general perspective on the incipient ideas of topology encountered when exploring the rigorous theorem-proof approach to Calculus.
(6557 views)