Logo

Lecture Notes in Quantum Mechanics

Lecture Notes in Quantum Mechanics
by

Publisher: arXiv
Number of pages: 285

Description:
These lecture notes cover undergraduate textbook topics and also additional advanced topics at the same level of presentation. In particular: EPR and Bell; Basic postulates; The probability matrix; Measurement theory; Entanglement; Quantum computation; Wigner-Weyl formalism; The adiabatic picture; Berry phase; Linear response theory; Kubo formula; Modern approach to scattering theory with mesoscopic orientation; Theory of the resolvent and the Green function; Gauge and Galilei Symmetries; Motion in magnetic field; Quantum Hall effect; Quantization of the electromagnetic field; Fock space formalism.

Home page url

Download or read it online for free here:
Download link
(2MB, PDF)

Similar books

Book cover: An Introduction to Relativistic Quantum MechanicsAn Introduction to Relativistic Quantum Mechanics
by - arXiv
By using the general concepts of special relativity and the requirements of quantum mechanics, Dirac equation is derived and studied. Only elementary knowledge of spin and rotations in quantum mechanics and standard linear algebra are required.
(15434 views)
Book cover: Quantum WalksQuantum Walks
by - arXiv
This text showcases the many varieties and uses of quantum walks. Discrete time quantum walks are introduced as counterparts of classical random walks. The emphasis is on the connections and differences between the two types of processes ...
(8705 views)
Book cover: The basic paradoxes of statistical classical physics and quantum mechanicsThe basic paradoxes of statistical classical physics and quantum mechanics
by - arXiv
Statistical classical mechanics and quantum mechanics are two developed theories that contain a number of paradoxes. However the given paradoxes can be resolved within the framework of the existing physics, without introduction of new laws.
(14150 views)
Book cover: Quantization is a MysteryQuantization is a Mystery
by - arXiv
Expository notes which combine a historical survey of the development of quantum physics with a review of selected mathematical topics in quantization theory (addressed to students that are not complete novices in quantum mechanics).
(9254 views)