Partial Differential Equations of Mathematical Physics
by William W. Symes
Publisher: Rice University 2006
Number of pages: 105
Description:
This course aims to make students aware of the physical origins of the main partial differential equations of classical mathematical physics, including the fundamental equations of fluid and solid mechanics, thermodynamics, and classical electrodynamics. These equations form the backbone of modern engineering and many of the sciences, and solving them numerically is a central topic in scientific computation.
Download or read it online for free here:
Download link
(490KB, PDF)
Similar books

by Mario Argeri, Pierpaolo Mastrolia - arXiv
The authors review the method of differential equations for the evaluation of D-dimensionally regulated Feynman integrals. After dealing with the technique, we discuss its application in the context of corrections to the photon propagator in QED.
(14023 views)

by Max Lein - arXiv
These lecture notes give an overview of how to view and solve differential equations that are common in physics. They cover Hamilton's equations, variations of the Schroedinger equation, the heat equation, the wave equation and Maxwell's equations.
(10185 views)

by W. Wilson - Dutton
The purpose of the present work is to present an account of the theoretical side of physics which, without being too elaborate, will be sufficiently comprehensive to be useful to teachers and students. This volume deals with mechanics and heat.
(11308 views)

by A. Pankov - Vinnitsa State Pedagogical University
Contents: Operators in Hilbert spaces; Spectral theorem of self-adjoint operators; Compact operators and the Hilbert-Schmidt theorem; Perturbation of discrete spectrum; Variational principles; One-dimensional Schroedinger operator; etc.
(10467 views)