**Partial Differential Equations of Mathematical Physics**

by William W. Symes

**Publisher**: Rice University 2006**Number of pages**: 105

**Description**:

This course aims to make students aware of the physical origins of the main partial differential equations of classical mathematical physics, including the fundamental equations of fluid and solid mechanics, thermodynamics, and classical electrodynamics. These equations form the backbone of modern engineering and many of the sciences, and solving them numerically is a central topic in scientific computation.

Download or read it online for free here:

**Download link**

(490KB, PDF)

## Similar books

**Lectures on Diffusion Problems and Partial Differential Equations**

by

**S.R.S. Varadhan**-

**Tata Institute of Fundamental Research**

Starting from Brownian Motion, the lectures quickly got into the areas of Stochastic Differential Equations and Diffusion Theory. The section on Martingales is based on additional lectures given by K. Ramamurthy of the Indian Institute of Science.

(

**6697**views)

**LieART: A Mathematica Application for Lie Algebras and Representation Theory**

by

**Robert Feger, Thomas W. Kephart**-

**arXiv**

We present the Mathematica application LieART (Lie Algebras and Representation Theory) for computations in Lie Algebras and representation theory, such as tensor product decomposition and subalgebra branching of irreducible representations.

(

**6709**views)

**Solitons**

by

**David Tong**-

**University of Cambridge**

These lectures cover aspects of solitons with focus on applications to the quantum dynamics of supersymmetric gauge theories and string theory. The lectures consist of four sections, each dealing with a different soliton.

(

**6632**views)

**Random Matrix Models and Their Applications**

by

**Pavel Bleher, Alexander Its**-

**Cambridge University Press**

The book covers broad areas such as topologic and combinatorial aspects of random matrix theory; scaling limits, universalities and phase transitions in matrix models; universalities for random polynomials; and applications to integrable systems.

(

**12942**views)