Logo

Partial Differential Equations of Mathematical Physics

Small book cover: Partial Differential Equations of Mathematical Physics

Partial Differential Equations of Mathematical Physics
by

Publisher: Rice University
Number of pages: 105

Description:
This course aims to make students aware of the physical origins of the main partial differential equations of classical mathematical physics, including the fundamental equations of fluid and solid mechanics, thermodynamics, and classical electrodynamics. These equations form the backbone of modern engineering and many of the sciences, and solving them numerically is a central topic in scientific computation.

Home page url

Download or read it online for free here:
Download link
(490KB, PDF)

Similar books

Book cover: Lectures on Diffusion Problems and Partial Differential EquationsLectures on Diffusion Problems and Partial Differential Equations
by - Tata Institute of Fundamental Research
Starting from Brownian Motion, the lectures quickly got into the areas of Stochastic Differential Equations and Diffusion Theory. The section on Martingales is based on additional lectures given by K. Ramamurthy of the Indian Institute of Science.
(6697 views)
Book cover: LieART: A Mathematica Application for Lie Algebras and Representation TheoryLieART: A Mathematica Application for Lie Algebras and Representation Theory
by - arXiv
We present the Mathematica application LieART (Lie Algebras and Representation Theory) for computations in Lie Algebras and representation theory, such as tensor product decomposition and subalgebra branching of irreducible representations.
(6709 views)
Book cover: SolitonsSolitons
by - University of Cambridge
These lectures cover aspects of solitons with focus on applications to the quantum dynamics of supersymmetric gauge theories and string theory. The lectures consist of four sections, each dealing with a different soliton.
(6632 views)
Book cover: Random Matrix Models and Their ApplicationsRandom Matrix Models and Their Applications
by - Cambridge University Press
The book covers broad areas such as topologic and combinatorial aspects of random matrix theory; scaling limits, universalities and phase transitions in matrix models; universalities for random polynomials; and applications to integrable systems.
(12942 views)