**Partial Differential Equations of Mathematical Physics**

by William W. Symes

**Publisher**: Rice University 2006**Number of pages**: 105

**Description**:

This course aims to make students aware of the physical origins of the main partial differential equations of classical mathematical physics, including the fundamental equations of fluid and solid mechanics, thermodynamics, and classical electrodynamics. These equations form the backbone of modern engineering and many of the sciences, and solving them numerically is a central topic in scientific computation.

Download or read it online for free here:

**Download link**

(490KB, PDF)

## Similar books

**Physics, Topology, Logic and Computation: A Rosetta Stone**

by

**John C. Baez, Mike Stay**-

**arXiv**

There is extensive network of analogies between physics, topology, logic and computation. In this paper we make these analogies precise using the concept of 'closed symmetric monoidal category'. We assume no prior knowledge of category theory.

(

**10864**views)

**Lectures on Integrable Hamiltonian Systems**

by

**G.Sardanashvily**-

**arXiv**

We consider integrable Hamiltonian systems in a general setting of invariant submanifolds which need not be compact. This is the case a global Kepler system, non-autonomous integrable Hamiltonian systems and systems with time-dependent parameters.

(

**8757**views)

**Introduction to Physics for Mathematicians**

by

**Igor Dolgachev**

A set of class notes taken by math graduate students, the goal of the course was to introduce some basic concepts from theoretical physics which play so fundamental role in a recent intermarriage between physics and pure mathematics.

(

**16697**views)

**Mathematics for Physics: A Guided Tour for Graduate Students**

by

**Michael Stone, Paul Goldbart**-

**Cambridge University Press**

This book provides a graduate-level introduction to the mathematics used in research in physics. It focuses on differential and integral equations, Fourier series, calculus of variations, differential geometry, topology and complex variables.

(

**18370**views)