Logo

Basics of Fluid Mechanics by Genick Bar-Meir

Large book cover: Basics of Fluid Mechanics

Basics of Fluid Mechanics
by


Number of pages: 189

Description:
This book, Basics of Fluid Mechanics, describes the fundamentals of fluid mechanics phenomena for engineers and others. This book is designed to replace all introductory textbook(s) or instructor’s notes for the fluid mechanics in undergraduate classes for engineering/science students but also for technical peoples. It is hoped that the book could be used as a reference book for people who have at least some basics knowledge of science areas such as calculus, physics, etc.

Home page url

Download or read it online for free here:
Download link
(multiple formats)

Similar books

Book cover: The Secret of FlightThe Secret of Flight
by
A theory of subsonic flight based on a combination of analysis and computation. We uncover a mechanism for the generation of substantial lift at the expense of small drag of a wing, which is fundamentally different from the classical theories.
(29330 views)
Book cover: An Introduction to the Mechanics of FluidsAn Introduction to the Mechanics of Fluids
by - Longmans, Green
In writing this book, while preserving the usual rigour, the endeavour has been made to impart to it by the character of the illustrations and examples, a modern and practical flavour which will render it more widely useful. The calculus is not used.
(10297 views)
Book cover: Complex Fluids: The Physics of EmulsionsComplex Fluids: The Physics of Emulsions
by - arXiv
These lectures start with the mean field theory for a symmetric binary fluid mixture, addressing interfacial tension, the stress tensor, and the equations of motion (Model H). We then consider the phase separation kinetics of such a mixture.
(7672 views)
Book cover: The Secret of SailingThe Secret of Sailing
by
This book presents a mathematical theory of sailing based on a combination of analysis and computation. This new theory is fundamentally different from that envisioned in the classical theories for lift in inviscid flow and for drag in viscous flow.
(13694 views)