Logo

Introduction to Quantum Noise, Measurement and Amplification

Small book cover: Introduction to Quantum Noise, Measurement and Amplification

Introduction to Quantum Noise, Measurement and Amplification
by

Publisher: arXiv
Number of pages: 102

Description:
The topic of quantum noise has become extremely timely due to the rise of quantum information physics and the resulting interchange of ideas between the condensed matter and AMO/quantum optics communities. This review gives a pedagogical introduction to the physics of quantum noise and its connections to quantum measurement and quantum amplification.

Home page url

Download or read it online for free here:
Download link
(2.1MB, PDF)

Similar books

Book cover: Consistent Quantum TheoryConsistent Quantum Theory
by - Cambridge University Press
This volume elucidates the consistent quantum theory approach to quantum mechanics at a level accessible to university students in physics, chemistry, mathematics, and computer science, making this an ideal supplement to standard textbooks.
(14266 views)
Book cover: The basic paradoxes of statistical classical physics and quantum mechanicsThe basic paradoxes of statistical classical physics and quantum mechanics
by - arXiv
Statistical classical mechanics and quantum mechanics are two developed theories that contain a number of paradoxes. However the given paradoxes can be resolved within the framework of the existing physics, without introduction of new laws.
(14696 views)
Book cover: Quantum Dissipative SystemsQuantum Dissipative Systems
by
An interesting topic of quantum mechanics is the study of open quantum systems. By it, we mean a simple quantum system, described by one or a few degrees of freedom, interacting with a background characterized by a continuum of excitations.
(11184 views)
Book cover: Quantum MechanicsQuantum Mechanics
by - Universität Ulm
Contents: Wave Mechanics; Fundamental Concepts of Quantum Mechanics; Quantum Dynamics; Angular Momentum; Approximation Methods; Symmetry in Quantum Mechanics; Theory of chemical bonding; Scattering Theory; Relativistic Quantum Mechanics.
(17107 views)