Monte Carlo: Basics
by K. P. N. Murthy
Publisher: arXiv 2001
Number of pages: 76
Description:
An introduction to the basics of Monte Carlo is given. The topics covered include, sample space, events, probabilities, random variables, mean, variance, covariance, characteristic function, chebyshev inequality, law of large numbers, central limit theorem (stable distribution, Levy distribution), random numbers (generation and testing), random sampling techniques (inversion, rejection, sampling from a Gaussian, Metropolis sampling), analogue Monte Carlo and Importance sampling (exponential biasing, spanier technique).
Download or read it online for free here:
Download link
(560KB, PDF)
Similar books

by Mark Newman - University of Michigan
The Python programming language is an excellent choice for learning, teaching, or doing computational physics. This page contains a selection of resources the author developed for teachers and students interested in computational physics and Python.
(20157 views)

by Matthias Bolten - John von Neumann Institute for Computing
This work is focused on the application of multigrid methods to particle simulation methods. Particle simulation is important for a broad range of scientific fields, like biophysics, astrophysics or plasma physics, to name a few.
(9559 views)

by Rubin H Landau, Manuel J Paez, Cristian Bordeianu - Wiley-VCH
This text surveys many of the topics of modern computational physics from a computational science point of view. Its emphasis on learning by doing (assisted by many model programs), as with 2nd Edition, but with new materials as well as with Python.
(11061 views)

by Angus MacKinnon - Imperial College London
This course aims to give the student a thorough grounding in the main computational techniques used in modern physics. This is not a text in computing science, nor in programming. It focuses specifically on methods for solving physics problems.
(14640 views)