Differential Geometry in Physics
by Gabriel Lugo
Publisher: University of North Carolina at Wilmington 2006
Number of pages: 61
Description:
These notes were developed as a supplement to a course on Differential Geometry at the advanced undergraduate, first year graduate level, which the author has taught for several years. There are many excellent texts in Differential Geometry but very few have an early introduction to differential forms and their applications to Physics. It is the purpose of these notes to bridge some of these gaps and thus help the student get a more profound understanding of the concepts involved.
Download or read it online for free here:
Download link
(340KB, PDF)
Similar books

by Alain Connes, Matilde Marcolli - American Mathematical Society
The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role.
(12237 views)

by Raffaele Resta - University of Trieste
From the table of contents: Introduction; Early discoveries; Berry-ology (geometry in nonrelativistic quantum mechanics); Manifestations of the Berry phase; Modern theory of polarization; Quantum metric and the theory of the insulating state.
(10833 views)

by Maximilian Kreuzer - Technische Universitat Wien
From the table of contents: Topology (Homotopy, Manifolds, Surfaces, Homology, Intersection numbers and the mapping class group); Differentiable manifolds; Riemannian geometry; Vector bundles; Lie algebras and representations; Complex manifolds.
(17187 views)

by Vincent Bouchard - arXiv
These are introductory lecture notes on complex geometry, Calabi-Yau manifolds and toric geometry. We first define basic concepts of complex and Kahler geometry. We then proceed with an analysis of various definitions of Calabi-Yau manifolds.
(8801 views)