Probability, Geometry and Integrable Systems
by Mark Pinsky, Bjorn Birnir
Publisher: Cambridge University Press 2007
ISBN/ASIN: 0521895278
ISBN-13: 9780521895279
Number of pages: 428
Description:
The three main themes of this book, probability theory, differential geometry, and the theory of integrable systems, reflect the broad range of mathematical interests of Henry McKean, to whom it is dedicated. Written by experts in probability, geometry, integrable systems, turbulence, and percolation, the seventeen papers included here demonstrate a wide variety of techniques that have been developed to solve various mathematical problems in these areas.
Download or read it online for free here:
Download link
(multiple PDF files)
Similar books

by Dave Auckly - arXiv
This paper introduced undergraduates to the Atiyah-Singer index theorem. It includes a statement of the theorem, an outline of the easy part of the heat equation proof. It includes counting lattice points and knot concordance as applications.
(8445 views)

by David Hoffman - American Mathematical Society
The wide variety of topics covered make this volume suitable for graduate students and researchers interested in differential geometry. The subjects covered include minimal and constant-mean-curvature submanifolds, Lagrangian geometry, and more.
(10538 views)

by Peter W. Michor - Universitaet Wien
Gauge theory usually investigates the space of principal connections on a principal fiber bundle (P,p,M,G) and its orbit space under the action of the gauge group (called the moduli space), which is the group of all principal bundle automorphisms...
(8785 views)

by Kentaro Yano - North Holland Publishing Co.
The topics include: Spaces with a non-vanishing curvature tensor that admit a group of automorphisms of the maximum order; Groups of transformations in generalized spaces; Global properties of the groups of motions in a compact Riemannian space...
(2910 views)