A Short Course in Information Theory
by David J. C. MacKay
Publisher: University of Cambridge 1995
Description:
Is it possible to communicate reliably from one point to another if we only have a noisy communication channel? How can the information content of a random variable be measured? This course will discuss the remarkable theorems of Claude Shannon, starting from the source coding theorem, which motivates the entropy as the measure of information, and culminating in the noisy channel coding theorem. Along the way we will study simple examples of codes for data compression and error correction.
Download or read it online for free here:
Download link
(multiple PDF,PS files)
Similar books

by Renato Renner - ETH Zurich
Processing of information is necessarily a physical process. It is not surprising that physics and the theory of information are inherently connected. Quantum information theory is a research area whose goal is to explore this connection.
(11897 views)

by Robert M. Gray - Information Systems Laboratory
The conditional rate-distortion function has proved useful in source coding problems involving the possession of side information. This book represents an early work on conditional rate distortion functions and related theory.
(8872 views)

by Venkatesan Guruswami, Atri Rudra, Madhu Sudan - University at Buffalo
Error-correcting codes are clever ways of representing data so that one can recover the original information even if parts of it are corrupted. The basic idea is to introduce redundancy so that the original information can be recovered ...
(8703 views)

- Wikibooks
Data compression is useful in some situations because 'compressed data' will save time (in reading and on transmission) and space if compared to the unencoded information it represent. In this book, we describe the decompressor first.
(8819 views)