Logo

Convex Geometric Analysis by Keith Ball, Vitali Milman

Large book cover: Convex Geometric Analysis

Convex Geometric Analysis
by

Publisher: Cambridge University Press
ISBN/ASIN: 0521642590
ISBN-13: 9780521642590
Number of pages: 236

Description:
Convex bodies are at once simple and amazingly rich in structure. This collection involves researchers in classical convex geometry, geometric functional analysis, computational geometry, and related areas of harmonic analysis. It is representative of the best research in a very active field that brings together ideas from several major strands in mathematics.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: Combinatorial and Computational GeometryCombinatorial and Computational Geometry
by - Cambridge University Press
This volume includes articles exploring geometric arrangements, polytopes, packing, covering, discrete convexity, geometric algorithms and their complexity, and the combinatorial complexity of geometric objects, particularly in low dimension.
(12109 views)
Book cover: Categorical GeometryCategorical Geometry
by
This is a book on the general theory of analytic categories. From the table of contents: Introduction; Analytic Categories; Analytic Topologies; Analytic Geometries; Coherent Analytic Categories; Coherent Analytic Geometries; and more.
(11406 views)
Book cover: The Radon TransformThe Radon Transform
by - Birkhauser Boston
The Radon transform is an important topic in integral geometry which deals with the problem of expressing a function on a manifold in terms of its integrals over certain submanifolds. Solutions to such problems have a wide range of applications.
(11474 views)
Book cover: Topics in GeometryTopics in Geometry
by - University of St Andrews
Contents: Foundations; Linear groups; Isometries of Rn; Isometries of the line; Isometries of the plane; Isometries in 3 dimensions; Symmetry groups in the plane; Platonic solids; Finite symmetry groups of R3; Full finite symmetry groups in R3; etc.
(9894 views)