**Semi-Riemann Geometry and General Relativity**

by Shlomo Sternberg

2003**Number of pages**: 251

**Description**:

This book represents course notes for a one semester course at the undergraduate level giving an introduction to Riemannian geometry and its principal physical application, Einsteinâ€™s theory of general relativity. The background assumed is a good grounding in linear algebra and in advanced calculus, preferably in the language of differential forms.

Download or read it online for free here:

**Download link**

(1MB, PDF)

## Similar books

**Holonomy Groups in Riemannian Geometry**

by

**Andrew Clarke, Bianca Santoro**-

**arXiv**

The holonomy group is one of the fundamental analytical objects that one can define on a Riemannian manfold. These notes provide a first introduction to the main general ideas on the study of the holonomy groups of a Riemannian manifold.

(

**5769**views)

**A Panoramic View of Riemannian Geometry**

by

**Marcel Berger**-

**Springer**

In this monumental work, Marcel Berger manages to survey large parts of present day Riemannian geometry. The book offers a great opportunity to get a first impression of some part of Riemannian geometry, together with hints for further reading.

(

**8917**views)

**Lectures on Geodesics in Riemannian Geometry**

by

**M. Berger**-

**Tata Institute of Fundamental Research**

The main topic of these notes is geodesics. Our aim is to give a fairly complete treatment of the foundations of Riemannian geometry and to give global results for Riemannian manifolds which are subject to geometric conditions of various types.

(

**6573**views)

**An Introduction to Riemannian Geometry with Applications to Mechanics and Relativity**

by

**Leonor Godinho, Jose Natario**

Contents: Differentiable Manifolds; Differential Forms; Riemannian Manifolds; Curvature; Geometric Mechanics; Relativity (Galileo Spacetime, Special Relativity, The Cartan Connection, General Relativity, The Schwarzschild Solution).

(

**5859**views)