Logo

Partial Differential Equations: An Introduction

Small book cover: Partial Differential Equations: An Introduction

Partial Differential Equations: An Introduction
by

Publisher: arXiv
Number of pages: 208

Description:
This book encompasses both traditional and modern methods treating partial differential equation (PDE) of first order and second order. There is a balance in making a selfcontained mathematical text and introducing new subjects. It is addressing to all scientists using PDE in treating mathematical methods.

Home page url

Download or read it online for free here:
Download link
(1.5MB, PDF)

Similar books

Book cover: Solving PDEs in PythonSolving PDEs in Python
by - Springer
This book offers a concise and gentle introduction to finite element programming in Python based on the popular FEniCS software library. Using a series of examples, it guides readers through the essential steps to quickly solving a PDE in FEniCS.
(7105 views)
Book cover: Spectral Theory of Partial Differential EquationsSpectral Theory of Partial Differential Equations
by - arXiv
This text aims at highlights of spectral theory for self-adjoint partial differential operators, with an emphasis on problems with discrete spectrum. The course aims to develop your mental map of spectral theory in partial differential equations.
(10356 views)
Book cover: Introduction to the Method of Multiple ScalesIntroduction to the Method of Multiple Scales
by - arXiv
These lecture notes give an introduction to perturbation method with main focus on the method of multiple scales as it applies to pulse propagation in nonlinear optics. Aimed at students that have little or no background in perturbation methods.
(7034 views)
Book cover: Introduction to Partial Differential EquationsIntroduction to Partial Differential Equations
by - University of Oulu
Contents: Preliminaries; Local Existence Theory; Fourier Series; One-dimensional Heat Equation; One-dimensional Wave Equation; Laplace Equation; Laplace Operator; Dirichlet and Neumann Problems; Layer Potentials; The Heat Operator; The Wave Operator.
(14214 views)