Logo

Introduction to Quantum Integrability

Small book cover: Introduction to Quantum Integrability

Introduction to Quantum Integrability
by

Publisher: arXiv
Number of pages: 56

Description:
The authors review the basic concepts regarding quantum integrability. Special emphasis is given on the algebraic content of integrable models. The associated algebras are essentially described by the Yang-Baxter and boundary Yang-Baxter equations depending on the choice of boundary conditions.

Home page url

Download or read it online for free here:
Download link
(390KB, PDF)

Similar books

Book cover: Topics in Spectral TheoryTopics in Spectral Theory
by - McGill University
The subject of these lecture notes is spectral theory of self-adjoint operators and some of its applications to mathematical physics. The main theme is the interplay between spectral theory of self-adjoint operators and classical harmonic analysis.
(9264 views)
Book cover: Interactions, Strings and Isotopies in Higher Order Anisotropic SuperspacesInteractions, Strings and Isotopies in Higher Order Anisotropic Superspaces
by - arXiv
The monograph summarizes the author's results on the geometry of anholonomic and locally anisotropic interactions. The main subjects are in the theory of field interactions, strings and diffusion processes on spaces, superspaces and isospaces.
(11683 views)
Book cover: An elementary treatise on Fourier's series and spherical, cylindrical, and ellipsoidal harmonicsAn elementary treatise on Fourier's series and spherical, cylindrical, and ellipsoidal harmonics
by - Ginn and company
From the table of contents: Development in Trigonometric Series; Convergence of Fourier's Series; Solution of Problems in Physics by the Aid of Fourier's Integrals and Fourier's Series; Zonal Harmonics; Spherical Harmonics; Cylindrical Harmonics; ...
(17261 views)
Book cover: An Introduction to Hyperbolic AnalysisAn Introduction to Hyperbolic Analysis
by - arXiv
Contents: The hyperbolic algebra as a bidimensional Clifford algebra; Limits and series in the hyperbolic plane; The hyperbolic Euler formula; Analytic functions in the hyperbolic plane; Multivalued functions on the hyperbolic plane; etc.
(12240 views)