**A set of new Smarandache functions, sequences and conjectures in number theory**

by Felice Russo

**Publisher**: American Research Press 2000**ISBN/ASIN**: 1879585839**ISBN-13**: 9781879585836**Number of pages**: 114

**Description**:

The Smarandache's universe is undoubtedly very fascinating and is halfway between the number theory and the recreational mathematics. Even though sometime this universe has a very simple structure from number theory standpoint, it doesn't cease to be deeply mysterious and interesting. This book, following the Smarandache spirit, presents new Smarandache functions, new conjectures, solved/unsolved problems, new Smarandache type sequences and new Smarandache Notions in number theory.

Download or read it online for free here:

**Download link**

(0.4MB, PDF)

## Similar books

**On Some of Smarandache's Problems**

by

**Krassimir Atanassov**-

**Erhus Univ Pr**

A collection of 27 Smarandache's problems which the autor solved by 1999. 22 problems are related to different sequences, 4 problems are proved, modifications of two problems are formulated, and counterexamples to two of the problems are constructed.

(

**9519**views)

**Modular Forms, Hecke Operators, and Modular Abelian Varieties**

by

**Kenneth A. Ribet, William A. Stein**-

**University of Washington**

Contents: The Main objects; Modular representations and algebraic curves; Modular Forms of Level 1; Analytic theory of modular curves; Modular Symbols; Modular Forms of Higher Level; Newforms and Euler Products; Hecke operators as correspondences...

(

**7238**views)

**Geometry of Numbers with Applications to Number Theory**

by

**Pete L. Clark**-

**University of Georgia**

The goal is to find and explore open questions in both geometry of numbers -- e.g. Lattice Point Enumerators, the Ehrhart-Polynomial, Minkowski's Convex Body Theorems, Minkowski-Hlawka Theorem, ... -- and its applications to number theory.

(

**7255**views)

**Lectures on Shimura Varieties**

by

**A. Genestier, B.C. Ngo**

The goal of these lectures is to explain the representability of moduli space abelian varieties with polarization, endomorphism and level structure, due to Mumford and the description of the set of its points over a finite field, due to Kottwitz.

(

**7103**views)