**An Introduction to Hyperbolic Analysis**

by Andrei Khrennikov, Gavriel Segre

**Publisher**: arXiv 2005**Number of pages**: 42

**Description**:

Contents: The hyperbolic algebra as a bidimensional Clifford algebra; Limits and series in the hyperbolic plane; The hyperbolic Euler formula; Analytic functions in the hyperbolic plane; Multivalued functions on the hyperbolic plane and hyperbolic Riemann surfaces; Physical application to the vibrating string; Hyperbolic Analysis as the (1,0)-case of Clifford Analysis.

Download or read it online for free here:

**Download link**

(350KB, PDF)

## Similar books

**Little Magnetic Book**

by

**Nicolas Raymond**-

**arXiv**

'Little Magnetic Book' is devoted to the spectral analysis of the magnetic Laplacian in various geometric situations. In particular the influence of the geometry on the discrete spectrum is analysed in many asymptotic regimes.

(

**7172**views)

**Elements for Physics: Quantities, Qualities, and Intrinsic Theories**

by

**Albert Tarantola**-

**Springer**

Reviews Lie groups, differential geometry, and adapts the usual notion of linear tangent application to the intrinsic point of view proposed for physics. The theory of heat conduction and the theory of linear elastic media are studied in detail.

(

**16443**views)

**Lectures on Integrable Hamiltonian Systems**

by

**G.Sardanashvily**-

**arXiv**

We consider integrable Hamiltonian systems in a general setting of invariant submanifolds which need not be compact. This is the case a global Kepler system, non-autonomous integrable Hamiltonian systems and systems with time-dependent parameters.

(

**9067**views)

**Random Matrix Models and Their Applications**

by

**Pavel Bleher, Alexander Its**-

**Cambridge University Press**

The book covers broad areas such as topologic and combinatorial aspects of random matrix theory; scaling limits, universalities and phase transitions in matrix models; universalities for random polynomials; and applications to integrable systems.

(

**17180**views)