Logo

Introduction to Homological Geometry

Small book cover: Introduction to Homological Geometry

Introduction to Homological Geometry
by

Publisher: arXiv

Description:
This is an introduction to some of the analytic (or integrable systems) aspects of quantum cohomology which have attracted much attention during the last few years. The small quantum cohomology algebra, regarded as an example of a Frobenius manifold, is described in the original naive manner, without going into the technicalities of a rigorous definition.

Home page url

Download or read it online for free here:
Download link 1
Download link 2

(multiple PDF files)

Similar books

Book cover: Functional Differential GeometryFunctional Differential Geometry
by - MIT
Differential geometry is deceptively simple. It is surprisingly easy to get the right answer with informal symbol manipulation. We use computer programs to communicate a precise understanding of the computations in differential geometry.
(12005 views)
Book cover: Introduction to Evolution Equations in GeometryIntroduction to Evolution Equations in Geometry
by - arXiv
The author aimed at providing a first introduction to the main general ideas on the study of the Ricci flow, as well as guiding the reader through the steps of Kaehler geometry for the understanding of the complex version of the Ricci flow.
(10795 views)
Book cover: Manifolds: Current Research AreasManifolds: Current Research Areas
by - InTech
Differential geometry is a very active field of research and has many applications to areas such as physics and gravity, for example. The papers in this book cover a number of subjects which will be of interest to workers in these areas.
(6907 views)
Book cover: Projective Differential Geometry Old and NewProjective Differential Geometry Old and New
by - Cambridge University Press
This book provides a route for graduate students and researchers to contemplate the frontiers of contemporary research in projective geometry. The authors include exercises and historical comments relating the basic ideas to a broader context.
(18111 views)