Logo

Introduction to Mathematical Logic: A problem solving course

Small book cover: Introduction to Mathematical Logic: A problem solving course

Introduction to Mathematical Logic: A problem solving course
by

Publisher: arXiv
Number of pages: 75

Description:
This is a set of 288 questions written for a Moore-style course in Mathematical Logic. Topics covered are: propositional logic; axioms of ZFC; wellorderings and equivalents of AC; ordinal and cardinal arithmetic; first order logic, and the compactness theorem; Lowenheim-Skolem theorems; Turing machines, Church's Thesis; completeness theorem and first incompleteness theorem; undecidable theories; second incompleteness theorem.

Home page url

Download or read it online for free here:
Download link
(430KB, PDF)

Similar books

Book cover: Predicative ArithmeticPredicative Arithmetic
by - Princeton Univ Pr
The book based on lecture notes of a course given at Princeton University in 1980. From the contents: the impredicativity of induction, the axioms of arithmetic, order, induction by relativization, the bounded least number principle, and more.
(13854 views)
Book cover: What is Mathematics: Gödel's Theorem and AroundWhat is Mathematics: Gödel's Theorem and Around
by - University of Latvia
Textbook for students in mathematical logic and foundations of mathematics. Contents: Platonism, intuition and the nature of mathematics; Axiomatic Set Theory; First Order Arithmetic; Hilbert's Tenth Problem; Incompleteness Theorems; Godel's Theorem.
(3724 views)
Book cover: Mathematical LogicMathematical Logic
by - Pennsylvania State University
Lecture notes for all mathematics graduate students. The text covers propositional calculus, predicate calculus, proof systems, extensions of the predicate calculus, theories, definability, interpretability, arithmetization and incompleteness.
(12342 views)
Book cover: Logics of Time and ComputationLogics of Time and Computation
by - Center for the Study of Language
Sets out the basic theory of normal modal and temporal propositional logics, applies this theory to logics of discrete, dense, and continuous time, to the temporal logic of henceforth, next, and until, and to the dynamic logic of regular programs.
(7401 views)