Logo

A Concise Introduction to Mathematical Logic

Large book cover: A Concise Introduction to Mathematical Logic

A Concise Introduction to Mathematical Logic
by

Publisher: Springer
ISBN/ASIN: 1441912207
ISBN-13: 9781441912206
Number of pages: 131

Description:
The textbook by Professor Wolfgang Rautenberg is a well-written introduction to the beautiful and coherent subject of mathematical logic. It contains classical material such as logical calculi, beginnings of model theory, and Goedel's incompleteness theorems, as well as some topics motivated by applications, such as a chapter on logic programming.

Download or read it online for free here:
Download link
(1.5MB, PDF)

Similar books

Book cover: Mathematical LogicMathematical Logic
by - Pennsylvania State University
Lecture notes for all mathematics graduate students. The text covers propositional calculus, predicate calculus, proof systems, extensions of the predicate calculus, theories, definability, interpretability, arithmetization and incompleteness.
(14459 views)
Book cover: Predicative ArithmeticPredicative Arithmetic
by - Princeton Univ Pr
The book based on lecture notes of a course given at Princeton University in 1980. From the contents: the impredicativity of induction, the axioms of arithmetic, order, induction by relativization, the bounded least number principle, and more.
(15695 views)
Book cover: Logics of Time and ComputationLogics of Time and Computation
by - Center for the Study of Language
Sets out the basic theory of normal modal and temporal propositional logics, applies this theory to logics of discrete, dense, and continuous time, to the temporal logic of henceforth, next, and until, and to the dynamic logic of regular programs.
(9129 views)
Book cover: A Friendly Introduction to Mathematical LogicA Friendly Introduction to Mathematical Logic
by - Milne Library Publishing
In this book, readers with no previous study in the field are introduced to the basics of model theory, proof theory, and computability theory. The text is designed to be used either in an upper division undergraduate classroom, or for self study.
(6484 views)