Logo

Topics in topology: The signature theorem and some of its applications

Small book cover: Topics in topology: The signature theorem and some of its applications

Topics in topology: The signature theorem and some of its applications
by

Publisher: University of Notre Dame
Number of pages: 159

Description:
The author discusses several exciting topological developments that took place during the fifties decade which radically changed the way we think about many issues. Topics covered: Poincare duality, Thom isomorphism, Euler, Chern and Pontryagin classes, cobordisms groups, signature formula.

Home page url

Download or read it online for free here:
Download link
(1MB, PDF)

Similar books

Book cover: Algebraic and Geometric TopologyAlgebraic and Geometric Topology
by - Springer
The book present original research on a wide range of topics in modern topology: the algebraic K-theory of spaces, the algebraic obstructions to surgery and finiteness, geometric and chain complexes, characteristic classes, and transformation groups.
(16567 views)
Book cover: Lecture Notes on Motivic CohomologyLecture Notes on Motivic Cohomology
by - AMS
This book provides an account of the triangulated theory of motives. Its purpose is to introduce Motivic Cohomology, to develop its main properties, and finally to relate it to other known invariants of algebraic varieties and rings.
(9570 views)
Book cover: Modern Algebraic TopologyModern Algebraic Topology
by - Macmillan
Contents: Preliminary algebraic background; Chain relationships; The absolute homology groups and basic examples; Relative omology modules; Manifolds and fixed cells; Omology exact sequences; Simplicial methods and inverse and direct limits; etc.
(7591 views)
Book cover: Introduction to Algebraic Topology and Algebraic GeometryIntroduction to Algebraic Topology and Algebraic Geometry
by
Introduction to algebraic geometry for students with an education in theoretical physics, to help them to master the basic algebraic geometric tools necessary for algebraically integrable systems and the geometry of quantum field and string theory.
(11316 views)