Logo

Consistent Quantum Theory by Robert B. Griffiths

Large book cover: Consistent Quantum Theory

Consistent Quantum Theory
by

Publisher: Cambridge University Press
ISBN/ASIN: 0521539293
ISBN-13: 9780521539296
Number of pages: 408

Description:
This volume elucidates the consistent quantum theory approach to quantum mechanics at a level accessible to university students in physics, chemistry, mathematics, and computer science, making this an ideal supplement to standard textbooks. Griffiths provides a clear explanation of points not yet adequately treated in traditional texts and which students find confusing, as do their teachers.

Home page url

Download or read it online for free here:
Download link
(multiple PDF,PS files)

Similar books

Book cover: Introduction to Computational Quantum MechanicsIntroduction to Computational Quantum Mechanics
by - arXiv
This document is aimed at advanced students of physics who are familiar with the concepts and notations of quantum mechanics. It tries to bridge the gap between simple analytic calculations and complicated large-scale computations.
(7021 views)
Book cover: Quantum Physics NotesQuantum Physics Notes
by - Macquarie University
With the development of the quantum information interpretation of quantum mechanics, the tendency is to move away from wave mechanics to the more abstract linear algebra version. It is this view of quantum mechanics that is presented in these notes.
(15629 views)
Book cover: Quantum FluctuationsQuantum Fluctuations
by - Princeton University Press
This book deals with the kinematics of diffusion processes. The dynamical equations are derived from a variational principle, and interference, the asymptotics of free motion, bound states, statistics, and spin are described in classical terms.
(15786 views)
Book cover: Lecture Notes in Quantum MechanicsLecture Notes in Quantum Mechanics
by - arXiv
These lecture notes cover undergraduate textbook topics and also additional advanced topics: EPR and Bell; Basic postulates; The probability matrix; Measurement theory; Entanglement; Quantum computation; Wigner-Weyl formalism; etc.
(16561 views)