Logo

Introduction to the Field Theory of Classical and Quantum Phase Transitions

Small book cover: Introduction to the Field Theory of Classical and Quantum Phase Transitions

Introduction to the Field Theory of Classical and Quantum Phase Transitions
by

Publisher: arXiv
Number of pages: 178

Description:
These lecture notes provide a relatively self-contained introduction to field theoretic methods employed in the study of classical and quantum phase transitions. Classical phase transitions occur at a regime where quantum fluctuations do not play an important role, usually at high enough temperatures.

Home page url

Download or read it online for free here:
Download link
(1.1MB, PDF)

Similar books

Book cover: Theoretical Physics IV: Statistical PhysicsTheoretical Physics IV: Statistical Physics
by - Clausthal University of Technology
From the table of contents: Entropy and Information; The ideal Boltzmann gas; Equilibrium; Thermodynamic Processes; The Language of Thermodynamics; The Language of Statistical Physics; Non-interacting Model Systems; Non-interacting particles.
(8503 views)
Book cover: Pure State Quantum Statistical MechanicsPure State Quantum Statistical Mechanics
by - arXiv
A new approach towards the foundations of Statistical Mechanics is explored. The approach is genuine quantum in the sense that statistical behavior is a consequence of objective quantum uncertainties due to entanglement and uncertainty relations.
(10211 views)
Book cover: Fundamental Kinetic ProcessesFundamental Kinetic Processes
by - Boston University
The authors discuss the development of basic kinetic approaches to more complex and contemporary systems. Among the large menu of stochastic and irreversible processes, we chose the ones that we consider to be among the most instructive.
(12122 views)
Book cover: Time-related Issues in Statistical MechanicsTime-related Issues in Statistical Mechanics
by - Clarkson University
Topics covered: The description of apparent of irreversibility; Physical origins of the arrow(s) of time; Two-time boundary value problems; The micro / macro distinction and coarse graining; Quantum mechanics with special states.
(11825 views)