An Introduction to Mathematical Logic
by Wolfram Pohlers, Thomas Glass
1992
Number of pages: 229
Description:
This text treats pure logic and in this connection introduces to basic proof-theoretic techniques. In the second part fundamentals of model theory and in the third part those of recursion theory are dealt with. Furthermore, some extensions of first order logic are treated. Finally, axiom systems for number theory are introduced and Godel's theorems are proved.
This document is no more available for free.
Similar books

by Frank Waaldijk - arXiv
We give a theoretical and applicable framework for dealing with real-world phenomena. Joining pointwise and pointfree notions in BISH, natural topology gives a faithful idea of important concepts and results in intuitionism.
(8995 views)

by Nuel Belnap - University of Pittsburgh
This course assumes you know how to use truth functions and quantifiers as tools. Our task here is to study these very tools. Contents: logic of truth functional connectives; first order logic of extensional predicates, operators, and quantifiers.
(10901 views)

by Stephen G. Simpson - The Pennsylvania State University
This is a set of lecture notes from a 15-week graduate course at the Pennsylvania State University. The course covered some topics which are important in contemporary mathematical logic and foundations but usually omitted from introductory courses.
(5017 views)

by Robert Goldblatt - Center for the Study of Language
Sets out the basic theory of normal modal and temporal propositional logics, applies this theory to logics of discrete, dense, and continuous time, to the temporal logic of henceforth, next, and until, and to the dynamic logic of regular programs.
(10730 views)